Мыслитель из Хаманджии

Хаманджия (рум. Hamangia) — археологическая культура эпохи среднего неолита, распространённая в историческом регионе Добруджа на территории Румынии и Болгарии до правого берега Дуная в Мунтении и на юге. Название происходит от с. Бая-Хаманджия, где обнаружен один из археологических памятников.

Википедия:Хаманджия

Подробнее

4 900 ~

Каждому примитивному символу, выражению и последовательности выражений некоторой формальной системы S поставим в соответствие определённое натуральное число. Математические понятия и утверждения таким образом становятся понятиями и утверждениями о натуральных числах, и, следовательно, сами могут быть выражены в символизме системы S. Можно показать, в частности, что понятия «формула», «вывод», «выводимая формула» определимы внутри системы S, то есть можно восстановить, например, формулу F(v) в S с одной свободной натурально-числовой переменной v такую, что F(v), в интуитивной интерпретации, означает: v — выводимая формула. Теперь построим неразрешимое предложение системы S, то есть предложение A, для которого ни A, ни не-A невыводимы, следующим образом:

Формулу в S с точно одной свободной натурально-числовой переменной назовём класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n-е через R(n), и заметим, что понятие «класс-выражение», также как и отношение упорядочения R можно определить в системе S. Пусть α — произвольное класс-выражение; через [α;n] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n. Тернарное отношение x = [y;z] тоже оказывается определимым в S. Теперь определим класс K натуральных чисел следующим образом:

nK ≡ ¬Bew[R(n);n]    (*)

(где Bew x означает: x — выводимая формула). Так как все определяющие понятия из этого определения можно выразить в S, то это же верно и для понятия K, которое из них построено, то есть имеется такое класс-выражение C, что формула [C;n], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K. Как класс-выражение, C идентично некоторому определённому R(q) в нашей нумерации, то есть

C = R(q)

выполняется для некоторого определённого натурального числа q. Теперь покажем, что предложение [R(q);q] неразрешимо в S. Так, если предложение [R(q);q] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответствии со сказанным выше, q будет принадлежать K, то есть, в соответствии с (*), будет выполнено ¬Bew[R(q);q], что противоречит нашему предположению. С другой стороны, если предположить выводимым отрицание [R(q);q], то будет иметь место ¬qK, то есть Bew[R(q);q] будет истинным. Следовательно, [R(q);q] вместе со своим отрицанием будет выводимо, что снова невозможно.

В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

Следует отметить, что выражаемое формулой A утверждение не содержит порочного круга, поскольку изначально утверждается только, что некоторая конкретная формула, явную запись которой получить несложно (хоть и громоздко), недоказуема. «Только впоследствии (и, так сказать, по воле случая) оказывается, что эта формула в точности та, которой выражено само это утверждение».

Теорема Гёделя о неполноте

Комментарии

Добавить комментарий

Мыслитель из Хаманджии

Мыслитель из Хаманджии

Хаманджия (рум. Hamangia) — археологическая культура эпохи среднего неолита, распространённая в историческом регионе Добруджа на территории Румынии и Болгарии до правого берега Дуная в Мунтении и на юге. Название происходит от с. Бая-Хаманджия, где обнаружен один из археологических памятников.

Википедия:Хаманджия